JOURNAL OF
STRUGCTURAL
GEOLOGY

PERGAMON Journal of Structural Geology 22 (2000) 43-57

www.elsevier.nl/locate/jstrugeo

Fracture spacing in layered rocks: a new explanation based on
the stress transition

Taixu Bar*, David D. Pollard

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA

Received 8 February 1999; accepted 17 August 1999

Abstract

Opening-mode fractures (joints and veins) in layered sedimentary rocks often are periodically distributed with spacings
linearly related to the thickness of the fractured layer. To better understand this linear relation, we have investigated the stress
distribution between two adjacent opening-mode fractures as a function of the fracture spacing to layer thickness ratio using a
three-layer elastic model with a fractured central layer. The results show that when the fracture spacing to layer thickness ratio
changes from greater than to less than a critical value (approximately 1.0) the normal stress acting perpendicular to the fractures
changes from tensile to compressive. This stress state transition precludes further infilling of fractures unless there are existing
flaws and/or the fractures are driven by an internal fluid pressure or other mechanisms. Hence, for fractures driven by tectonic
extension, the critical fracture spacing to layer thickness ratio defines a lower limit, which also defines the condition of fracture
saturation. The critical value of the fracture spacing to layer thickness ratio is independent of the average strain of the fractured
layer, and it increases with increasing ratio of Young’s modulus of the fractured layer to that of the neighboring layers. The
critical value increases with increasing Poisson’s ratio of the fractured layer, and with increasing overburden stress (depth), but it
decreases with increasing Poisson’s ratio of the neighboring layers. For representative variation of the elastic constants of the
fractured layer and the neighboring layers, and overburden stress, the critical fracture spacing to layer thickness ratio varies
between 0.8 and 1.2. This range encompasses the often cited spacing to layer thickness ratios in the literature for well-developed
fractures sets. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Opening-mode fractures (joints and veins) in layered
sedimentary rocks are often confined by the layer
boundaries with their height equal to the layer thick-
ness (Helgeson and Aydin, 1991; Gross and Engelder,
1995). Fractures of the same set form under the same
tectonic stress field and are parallel or subparallel to
each other (Pollard and Aydin, 1988). In field obser-
vations, the spacing of two adjacent members of the
same set is commonly measured as the distance
between the fractures along a line perpendicular to the
average orientation of the fracture set (Narr and
Suppe, 1991; Gross, 1993).
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Although there are some exceptions, many field ob-
servations reveal that fracture spacing in layered sedi-
mentary rocks is roughly proportional to the thickness
of the fractured layer with the ratio of spacing to layer
thickness ranging from less than 0.1 to greater than 10
(Bogdanov, 1947; Novikova, 1947; Kirillova, 1949;
Price, 1966; McQuillan, 1973; Narr and Lerche, 1984;
Huang and Angelier, 1989; Narr and Suppe, 1991;
Gross, 1993; Gross et al., 1995; Wu and Pollard, 1995;
Becker and Gross, 1996; Ji and Saruwatari, 1998). The
adverb ‘roughly’ is used here because none of the
reported plots of fracture spacing versus layer thick-
ness exactly follows a straight line. Instead the data
are scattered to some extent about a ‘best-fitting’ line.
In describing this rough linear relationship, mean (e.g.
Huang and Angelier, 1989) or median (e.g. Narr and
Suppe, 1991; Gross, 1993; Ji and Saruwatari, 1998)
fracture spacing is usually used, and two terms,
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Fracture Spacing Ratio (FSR, Gross, 1993) and
Fracture Spacing Index (FSI, Narr and Suppe, 1991),
are introduced. FSR is the ratio of layer thickness to
median fracture spacing for an individual layer. FSI is
the slope of the best-fit line on plots of layer thickness
versus median fracture spacing for a number of layers
of varying thicknesses. The relative magnitudes of
FSR and FSI are indicators of fracture density.

In this study, we investigate spacing of fractures
formed during the extension of layered rocks using the
finite element method (FEM). For simplicity, we pos-
tulate that the fractures are confined in a single mech-
anical layer (Narr and Suppe, 1991; Gross, 1993), are
equally spaced, and may be modeled in two dimen-
sions (i.e. in a cross-section view). In this case, the
mean or median spacing is the same as the spacing
between adjacent fractures. Also we use the term frac-
ture spacing to layer thickness ratio to describe the lin-
ear relationship between spacing and layer thickness
instead of FSR and FSI. This is because the focus is
on fracture spacing rather than on fracture density.
The spacing to layer thickness ratio is the inverse of
FSR or FSI for the model configuration.

One process of joint formation in layered rocks has
been described as ‘sequential infilling’ (Gross, 1993).
This process is essentially that proposed by Hobbs
(1967) and has been demonstrated in four-point bend-
ing experiments with brittle coating materials (Wu and
Pollard, 1992, 1995). These experiments showed that
as the remote strain increases the fracture spacing
decreases approximately as the inverse of the remote
strain, by fractures nucleating and propagating
between earlier formed fractures. Eventually the frac-
tures reach such a close spacing that no more fractures
can infill, even with increasing strain. Instead, the
existing fractures continue to open to accommodate
the applied strain. This phenomenon is called ‘fracture
saturation’ (Wu and Pollard, 1995). Similar terms were
proposed in the geological literature, such as ‘satur-
ation model’ by Cobbold (1979), and ‘saturated with
joints” by Narr and Suppe (1991), based on field obser-
vations; ‘saturation of cracking’” by Wu and Pollard
(1991), and ‘saturation level’ by Rives et al. (1992),
from experimental observation. Experimental work
reported in the engineering literature shows a similar
process for cross-ply laminates of glass-fibre-reinforced
polyester (Garrett and Bailey, 1977a, b; Parvizi and
Bailey, 1978).

Presently, none of the existing theoretical models
(e.g. Lachenbruch, 1961; Hobbs, 1967; Cherepanov,
1997) can adequately account for fracture saturation
and the range of spacing to layer thickness ratios from
field observations. To better understand the linear re-
lationship between fracture spacing and layer thick-
ness, and to explain fracture saturation, we present a

new theoretical model, which is the focus of this
paper.

We first give a brief review of the previous theoreti-
cal models in the study of fracture spacing. We then
investigate the stress state between adjacent fractures
in a row of parallel equally spaced fractures in a
layered material as a function of the average applied
strain, the fracture spacing to layer thickness ratio, the
overburden stress, and the elastic constants of the frac-
tured layer and its neighboring layers using the FEM.
Next, a laboratory experimental verification of the nu-
merical results is introduced. Finally, the implications
of the results for the study of fracture spacing in
layered rock is discussed.

2. Previous theoretical models

One of the earliest theoretical explanations of the
linear relation between fracture spacing and layer
thickness was proposed by Hobbs (1967). Based on
Cox’s (1952) stress transfer model, Hobbs (1967) de-
rived a linear relation between joint spacing and layer
thickness with the coefficient depending upon the
Young’s modulus of the fractured layer, Er, and the
shear modulus of the neighboring layers, G,.
Specifically, for a given average strain (g,ye) in the
neighboring layers, the fracture spacing to layer thick-
ness ratio (S/7Ty) is

S " (EN? [ ae

Tf N <2) (Gn) cosh <8uve - 5T>’ (1)
where &t is the maximum tensile strain in the fractured
layer given by the ratio op/Er, with op being the tensile
strength of the fractured layer. The integer n = 0 just
before fracturing between two joints as the stress at
the midpoint approaches ot. Immediately after this
first episode of infilling, n = 1, and the stress drops.
Subsequent increase in &, according to Hobbs,
would lead to another episode of infilling and a halv-
ing of S/T;. In other words, as strain increases, spacing
decreases ad infinitum. This model fails to explain frac-
ture saturation and is inconsistent with the field obser-
vations (Narr and Suppe, 1991) and the experimental
results (Garrett and Bailey, 1977a, b; Parvizi and
Bailey, 1978; Wu and Pollard, 1995).

Conceptually, the three layers of the Hobbs’ model
are subjected to the same extension, but the stress falls
to zero at the fracture surfaces in the middle layer.
Stress is transferred from the intact neighboring layers
to the region between the fractures. Once the stress
midway between two adjacent fractures reaches the
tensile strength of the rock in the fractured layer, as a
result of increasing the average strain, new fractures
are induced and the spacing is reduced by a factor of
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1/2. Similar considerations have been used in the study
of joints (Ji and Saruwatari, 1998), boudinage (Lloyd
et al., 1982; Masuda and Kuriyama, 1988; Masuda et
al., 1989, 1990), and the strength of rocks with rigid
inclusions dispersed in a soft ductile matrix (‘two-
phase rocks’, Ji and Zhao, 1994). Although the stress
transfer concept has considerable merit, the stress dis-
tribution derived by Hobbs (1967) does not satisfy the
fundamental equations of equilibrium and therefore
violates conservation of momentum: it is not a possible
stress distribution (see Appendix).

A similar explanation of fracture spacing is based
on the concept of a stress shadow caused by the open-
ing of a fracture (Lachenbruch, 1961; Nur, 1982;
Pollard and Segall, 1987, Gross et al., 1995). At the
fracture faces, the local fracture-normal stress is zero
in the absence of fluid pressure within the fracture.
This stress increases with increasing distance from the
fracture and eventually reaches the remote value.
Within a certain range of reduced stress, new fractures
cannot form because the stress level is below the frac-
ture stress of the rock, thereby defining a minimum
spacing for a given loading.

A simple example of the stress shadow is based on
the two-dimensional plane strain solution for the elas-
tic boundary value problem of an opening-mode frac-
ture in a homogeneous isotropic medium subjected to
constant remote stress in the direction perpendicular to
the fracture (Pollard and Segall, 1987). The minimum
spacing between any two fractures is determined by
the distance from the fracture at which the fracture
normal stress returns to a specific percentage, C, of the
remote value, and this distance is proportional to the
fracture dimension that equals the mechanical layer
thickness. Specifically the relation is

S 1 C's3 )
i e @

As indicated by Pollard and Segall (1987), with
C =99%, we have S/Ty=6.1; and with C=72%,
S/Ty = 1.0. It is possible that new fractures form at or
beyond these distances. Therefore, the stress shadow
concept helps explain the linear relation between frac-
ture spacing and layer thickness, but the arbitrary
nature of C precludes a specific application to fracture
spacing.

Sowers (1972) and Cherepanov (1997) proposed that
the periodic fracture patterns in layered rocks are
caused by achieving a [limiting equilibrium state
(Timoshenko, 1936; Biot, 1965; Cherepanov, 1997) in
the fractured layer. The concept is similar to the well-
known phenomenon of buckling of a rod under axial
compression. In layered materials, a compressive stress
perpendicular to the layer causes the strain energy in
the fractured layer (Sowers, 1972) and the compressive

stress along the layer boundaries (Cherepanov, 1997)
to be periodically distributed. These authors hypoth-
esize that the periodic stress or strain energy distri-
bution in the layer causes fractures to form selectively
at locations of maxima in these quantities and in the
direction perpendicular to the layer boundaries.
Whereas Sowers (1972) used a numerical approach to
solve the problem, Cherepanov (1997) solved the pro-

Table 1
Fracture spacing to layer thickness data from the literature

Fracture spacing to Reference

layer thickness ratio (S/Tt)*

Range IV < 0.1 Ladeira and Price (1981)

< 0.1 Ladeira and Price (1981)

< 0.1 Ladeira and Price (1981)

0.11 Becker and Gross (1996)

0.17 Ladeira and Price (1981)

0.23 Ladeira and Price (1981)
Range 11T 0.31 Ladeira and Price (1981)

0.41 Gross et al. (1995)

0.42 Ladeira and Price (1981)

0.44 Gross et al. (1995)

0.45 Gross et al. (1997)

0.56 Gross (1993)

0.59 Price (1966)

0.60 Huang and Angelier (1989)

0.67 Gross et al. (1997)

0.71 Gross et al. (1997)

0.74 Gross et al. (1997)

0.76 Narr and Suppe (1991)

0.76 Gross (1993)

0.77 Gross et al. (1997)

0.77 Becker and Gross (1996)

0.79 Narr and Suppe (1991)

0.79 Gross (1993)

0.79 Gross (1993)
Range I 0.81 Gross (1993)

0.82 Narr and Suppe (1991)

0.83 Gross et al. (1997)

0.83 Ji and Saruwatari (1998)

0.90 Gross et al. (1995)

0.92 Gross et al. (1995)

0.95 Gross et al. (1997)

1.00 Gross et al. (1997)

1.05 Huang and Angelier (1989)

1.05 Gross et al. (1997)

1.05 Gross et al. (1997)

1.06 Wu and Pollard (1995)

1.11 Gross et al. (1997)

1.11 Price (1966)

1.11 Price (1966)

1.18 Gross et al. (1997)
Range I 1.25 Becker and Gross (1996)

1.47 McQuillan (1973)

1.47 Gross (1993)

1.67 Ladeira and Price (1981)

2-10 Narr and Suppe (1991)

# Note the spacing to layer thickness ratios in this table were calcu-
lated using the inverse of the Fracture Spacing Index (FSI) or the
Fracture Spacing Ratio (FSR). Different spacing to layer thickness
ratios from the same author(s) are from different layers.
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blem analytically. In terms of the fracture spacing to
layer thickness ratio, the following expression can be
derived from Cherepanov’s solutions

A S ()

Te 2 4w’ — 3w

where vr is the Poisson’s ratio of the fractured layer.
This implies that the spacing to layer thickness ratio is
only a function of the Poisson’s ratio of the fractured
layer. This is inconsistent with the field observations
that spacing is a function of the stiffness of the frac-
tured layer (Gross et al.,, 1995). Furthermore, for
vi =0, we get /Ty =2.72; and for v = 0.5, we have
S/T¢ = 3.14. These cover only a few data sets from
field observations (refer to Table 1).

3. Numerical modeling
3.1. Numerical method and boundary conditions

We investigate the stress state transition between
adjacent equally spaced fractures using a two-dimen-
sional finite element code named FRANC (FRacture
ANalysis Code). This code was developed at Cornell
University and is based on the theory of linear and
non-linear elastic fracture mechanics (Wawrzynek and
Ingraffea, 1987). The model, its boundary and loading
conditions, and the FEM mesh are shown in Fig. 1.
The mesh was refined by reducing the sizes of the el-
ements until calculated stresses differed by less than
0.2% in the central layer. The fractured central layer
has a thickness 77 =0.2 m, which is also the height of
the fractures (H). The overall thickness of the model
(T'=T¢+2T,) is 0.8 m. The model width (W) varies
according to the spacing of fractures such that the dis-
tance from the left (or right) boundary to the left-most
(or right-most) fracture is at least three times the frac-
ture height. For this layered model, we postulate the
two materials across the layer boundaries are welded
together, i.e. no slip or opening is permitted along the
layer boundaries, and we postulate a plane strain con-
dition for the entire model. The Young’s moduli and
Poisson’s ratios for the adjacent layers are the same,
E, and v,, but may differ in the layer containing the
fractures, Er and vy.

We fix the whole bottom boundary of the model in
the y-direction, u,(B) =0, and the middle point of the
bottom boundary in the x-direction as well, u,(B) =0
at x = 0. We use a constant displacement condition in
the x-direction along the left boundary, u(L) = —U,,
and the right boundary, u,(R) = U,. The left and right
boundaries are not constrained in the y-direction
except at their lower corners. The top boundary is free

to displace as necessary to produce the designated
values of average strain in the x-direction for the study
of the average strain effect, and the elastic constant
effect on the critical spacing to layer thickness ratio
(see below). The average strain in the x-direction,
e (ave), is calculated as

exx(ave) = 22U,/ W. 4)

In the study of overburden effects on the critical spa-
cing to layer thickness ratio, we use a constant displa-
cement in the y-direction along the top boundary,
u,(T) = —=U,. For the case where the elastic constants
of the fractured layer and its neighboring layers are
the same, the overburden stress (magnitude), S,, can
be calculated as

Ey

Sy = T v —2vp)

|:Vf8xx(ave) (1= Vf)%i|‘ 3

In all of the models, we introduce only four frac-
tures in the row because our numerical results (Bai et
al., in press) with models containing up to 23 evenly
spaced fractures show that only the end members
behave significantly different from the other members.
In terms of fracture aperture and stress distribution,
all the members except those on the ends show nearly
the same behavior with differences of less than 2%.
This gives us the confidence to use the middle two
fractures in the four-fracture model to represent any
two adjacent fractures in a row composed of many
equally spaced members.

3.2. Stress state transition and the critical spacing to
layer thickness ratio

To show how the stress distribution varies as a func-
tion of the fracture spacing, we plot the distribution of
the normal stress in the direction perpendicular to the
fractures (o) versus the normalized position (x/7T})
along the line which is perpendicular to the fractures
and bisects them (Fig. 1, line AA’) for different frac-
ture spacing to layer thickness ratios (Fig. 2). Using
the sign convention that tensile stress is positive, the
stress distributions are calculated for models with the
same elastic constants for the three layers (Young’s
moduli Er=E,=40 GPa; Poisson’s ratios
ve = v, = 0.2) and an average normal strain across the
entire model in the direction perpendicular to the frac-
tures of &y(ave) = 0.002. From the plot, we see that
when the fracture spacing to layer thickness ratio is
0.9 and less, the stress is compressive (negative);
whereas when the ratio is 1.0 and greater, the stress
along the central portion of the plot changes to tensile
(positive).

This result shows that there is a critical value for the
fracture spacing to layer thickness ratio, which charac-
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Fig. 1. (a) FEM model and its boundary conditions of layered rocks with four equally spaced fractures in the fractured layer. The x-axis is paral-
lel to the layer boundaries and perpendicular to the fractures. The y-axis is perpendicular to the layer boundaries. The displacements imposed
along the left and right boundaries are u, (L) and u,(R), respectively. The bottom boundary is fixed in the y-direction, with the middle point
fixed in the x-direction as well. A displacement u, (7") is imposed on the top boundary of the model to simulate the effect of overburden stress.
See text for details. (b) The FEM mesh of the entire model. (¢) The mesh around one of the fractures.

terizes a stress state transition between the two frac-
tures: when the ratio is above this critical value the
stress is tensile in the central part along line AA’ (refer
to Fig. 1), whereas below this critical value the stress is
compressive all along the line. We call this the critical
spacing to layer thickness ratio, (S/Ty)e,. The sign of
the stress at the central point of line AA’ (i.e. point o

in Fig. 1) is used to define the transition: when the
sign of the stress at point o is positive, the correspond-
ing spacing to layer thickness ratio is above the critical
value; otherwise the corresponding spacing to layer
thickness ratio is below the critical value. For the case
with the same elastic constants for all three layers, the
critical ratio lies between 0.9 and 1.0.
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Fig. 2. Distributions of the normal stress component in the direction
perpendicular to the fractures (o,,) along the line AA’ (refer to Fig.
1) as a function of fracture spacing to layer thickness ratio (S/7%).
The figure shows that there is a critical spacing to layer thickness
ratio between 0.9 and 1.0, which marks the stress state transition.
When the spacing to layer thickness ratio (S/7%) is less than the criti-
cal value, the stress is compressive; whereas, when it is greater than
the critical value, the stress in the middle of the plot line becomes
tensile.

3.3. Effects of loading (average strain) on the critical
fracture spacing to layer thickness ratio

As shown in Fig. 3, values of o,,(x = 0) are linearly
related to the average strain with the slope depending
upon the spacing to layer thickness ratio. In other
words, the average strain only affects the magnitude of
oxx(x =0) but not its sign. The critical spacing to
layer thickness ratio is independent of the average
strain, and therefore independent of the displacement
boundary conditions that provide the average strain
for the model.

3.4. Effects of the elastic constants on the critical
fracture spacing to layer thickness ratio

The critical ratio, (S/T¥).., determined as either the
Young’s modulus of the fractured layer or that of the
neighboring layers, is varied, while keeping the other
elastic properties constant (Fig. 4a). The critical spa-
cing to layer thickness ratio increases with increasing
Young’s modulus of the fractured layer (Ef), but
decreases with increasing Young’s modulus of the
neighboring layers (E,).

By plotting the critical spacing to layer thickness

B0 [T T T T T T T o
" E;=E,=40GPa ]
200 - _ _ SITy=13 —
- Vp=Vp = 0.2 ]
150 | STg=1 ]
~ [ ]
<9 L ]
= : ]
s W r SITy=1, f
I [ i
53 [ ]
~ 50 -
o
© - ]
[ SMy=1.0 E
o << T T T T T T -]
r $Mi=09
S0k SM=0.7
C STi=08
100 PR SR WS SN U S SR S N SN S S S N ST SR Sy
0.00 0.01 0.02 0.03 0.04 0.05

Average Strain, g,,(ave)

Fig. 3. Plots of the normal stress in the direction perpendicular to
the fractures, o,,, at point o (refer to Fig. 1) as a function of average
strain, ¢..(ave), at various fracture spacing to layer thickness ratios
(S/T¢). The stress is linearly related to the average strain. So the
average strain does not affect the value of the critical spacing to
layer thickness ratio.

ratio versus the ratio of the Young’s moduli (E¢/E,),
we obtain the unique relation shown in Fig. 4(b). The
critical spacing to layer thickness ratio is non-linearly
related to the ratio of the Young’s moduli (Ef/E,): a
sharp change of the critical spacing to layer thickness
ratio occurs in the range of 0 < E;/E, < 2.0 (Fig. 4).
As this ratio goes to infinity, the critical spacing to
length ratio asymptotically approaches 1.12, which is
evaluated at E¢/E, = 4000. The best fit line to the nu-
merical results can be expressed as

(S/Tr) = 0.792 + 0.328{1 — exp[—0.824(E;/E,

—0.0025)*84}. (6)

The overall variation of the critical spacing to layer
thickness ratio caused by changes in the Young’s
moduli in the plotted range is approximately 32%.
This variation can be further constrained by consider-
ing the fact that the stiffer bed is more likely to be
fractured during tectonic extension. As two examples
among many others for relative stiffness of the frac-
tured layer and the neighboring layer, (1) Helgeson
and Aydin (1991) observed that in interbedded lime-
stone and shale sequences joints are found in limestone
layers but not in the shale layers; (2) Gross et al.
(1995) described the siliceous units from the Monterey
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Fig. 4. The Young’s modulus effects on the critical fracture spacing
to layer thickness ratio, (S/7¢).. (a) The critical spacing to layer
thickness ratio increases with increasing Young’s modulus of the
fractured layer (Er), but it decreases with increasing Young’s mod-
ulus of the neighboring layers (E,). (b) The critical spacing to layer
thickness ratio increases with increasing Young’s modulus ratio (Eg/
E.).

Formation as being full of joints, but no joint is found
in the neighboring clay-rich units. We conclude that in
most cases the jointed layer is stiffer than the neigh-
boring layers. That is, E/E,>1 (shaded area in Fig.
4b). Hence we reduce the overall variation of the criti-
cal spacing to layer thickness ratio to about 12%.
Young’s moduli of sedimentary rocks vary from
0.125 GPa for poorly cemented siltstone to 103 GPa
for jaspillite, ferrugtinous, and silicious sandstone
(Hatheway and Kiersch, 1989). This gives the maxi-
mum Young’s modulus ratio of 824. However, for
most sedimentary rocks, Young’s moduli fall within
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Fig. 5. The Poisson’s ratio effects on the critical fracture spacing to
layer thickness ratio, (S/T).. (a) Plots show that (S/T¢). increases
with increasing Poisson’s ratio of the fractured layer, but it decreases
with increasing Poisson’s ratio of the neighboring layers. (b) The re-
lation between (S/T¥)., and a combined factor of the Poisson’s ratios,
D =[(1=2vp)(1 +vp)—(1 = 2vp)(1 +v)/[(1 =v})+(1 = V)]

the range of 5-80 GPa. Furthermore, as the ratio of
the Young’s moduli increases beyond the plot range in
Fig. 4(b), the slope of the curve becomes flat. The rela-
tive variation of the critical spacing to layer thickness
ratio is within 12% even when the Young’s modulus
ratio is 1000.

The effects of the Poisson’s ratios of the fractured
layer and its neighboring layers on the value of the
critical spacing to layer thickness ratio are considered
by changing either Poisson’s ratio of the fractured
layer or that of the neighboring layers, while keeping
the other elastic properties constant. The critical spa-
cing to layer thickness ratio increases with increasing
Poisson’s ratio of the fractured layer (v¢) and decreases
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Fig. 6. The critical fracture spacing to layer thickness ratio (S/L)., variation as a function of the Young’s modulus ratio (E¢/E,), and the com-
bined factor from the Poisson’s ratios (D). Shaded area shows the reasonable range.

with increasing Poisson’s ratio of the neighboring
layers (v,) (Fig. 5a). To understand the effects of
Poisson’s ratio, we plot (Fig. 5b) the critical spacing to
layer thickness ratio versus a factor, D, defined as

_ (1 =2ve)(d +ve) — (1 = 2v)(1 +vyp)

b I—v)+ (") ’

(M

which is motivated by the Dundurs Parameter at Ef =
E, (Dundurs, 1969; Barber, 1992). The plot shows that
the critical spacing to layer thickness ratio decreases
monotonically with increasing D. Their relation is ap-
proximated as

(S/Tp)e; = 0.976 — 0.302D — 0.129D% +0.117D%.  (8)

The overall variation of the critical spacing to layer
thickness ratio caused by the changes in Poisson’s
ratio is about 13%. The reported values of Poisson’s
ratio for sedimentary rocks vary from 0.01 for carbon-
iferous sandstone to 0.46 for dolomite (Hatheway and
Kiersch, 1989). The plot in Fig. 5(b) covers all the
possible values of Poisson’s ratio of sedimentary rocks.

We combine the effects of the Young’s moduli and

the Poisson’s ratio on the critical fracture spacing to
layer thickness ratio by multiplying (6) and (8) and
normalizing the product by the value of (S/T}). at
E;=E,=40 GPa, and vi=v, =0.2, 1.e.
(S/Tt); = 0.976. The combined relation can be written
as

(S/Tr) = p(0.792 +0.328{1 — exp[—0.824

©)
(o0 — 0.0025)°5241}),

where o« = E;/E,, and = (0.976 — 0.302D — 0.129D>+
0.117D%)/0.976. Fig. 6 shows the combined effects of
the Young’s moduli and the Poisson’s ratio based on
the relations shown in Eq. (9). Along each of the lines
in this figure, the critical spacing to layer thickness
ratio is a constant.

3.5. Effects of overburden on the critical fracture
spacing to layer thickness ratio

Due to limitations of the finite element code,
FRANC, we cannot use mixed stress—displacement
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Fig. 7. Plot shows that the critical spacing to layer thickness ratio,
(S/T¢).r, increases with increasing overburden stress, Sy.

boundary conditions. To simulate the overburden
effect on the critical spacing to layer thickness ratio,
while keeping all the other boundary conditions the
same as before (Fig. 1a), we use constant displacement
along the upper boundary of the model with a magni-
tude necessary to generate a stress field equivalent to
that caused by the weight of overburden (see Eq. 5).

In modeling the overburden effect on the critical
spacing to layer thickness ratio, we use
E;=E,=40 GPa, vi =v, =0.2, ¢=0.002, and vary
U, to generate overburden stress of magnitudes ran-
ging from 0 to 200 MPa. We plot the critical spacing
to layer thickness ratio versus overburden stress in
Fig. 7. The plot shows that the critical spacing to layer
thickness ratio increases with increasing overburden
stress. The relationship is

(S/Tt)e = a+bS, + ¢S2 +dS3, (10)

where a =0.976, b= 1.118 x 1074, ¢ = —7.562 x 1078,
and d = 2.806 x 107°.

The overall variation of the critical spacing to layer
thickness ratio caused by the overburden stress is less
than 5%. This is smaller than the variations caused by
the range of elastic constants. The range of the over-
burden stress in the plot corresponds approximately to
depth ranging from 0 to 8 km.

To accommodate the overburden effect on the criti-
cal spacing to layer thickness ratio, we rewrite Eq. (10)
as

(S/Tp)., = Br(0.792 + 0.328{1 — exp[—0.824

(11)
(o — 0.0025)°5241}),

where 7y = (a+ bSy + ¢S2 +dS%)/0.976. Eq. (11) gives

A
0.57m
< 5 thin cut of >
0.005 m thick
: m thicl
g T > o
g <8 £ <> gl
8 <, ‘QE e b/ . > o
8« 3 § ot> s—> ¢
I € z L ( —> &
[ = > B
E: . ¢ > =
< ' strain gage © >
- located at the center of the specimen, i.e., point o ¢
R S B4 >

Fig. 8. Sketch of the experimental specimen and the finite element
model used to verify the experimental results. The specimen is loaded
by pinning it with the steel loading frame (not shown) through the
holes near the left and right edges. The FEM model does not contain
the pinholes, and the load is applied as constant displacements along
the left and right boundaries.

the general expression of the critical spacing to layer
thickness ratio as a function of the elastic constants of
the fractured layer and those of the neighboring layers,
and the overburden stress.

4. Experimental verification

We used Plexiglas (PMMA) plate specimens of
dimensions as shown in Fig. 8 to verify our numerical
results. The material has elastic constants £ = 31 GPa
and v =0.36 (Wu and Pollard, 1992). The specimens
were loaded on a custom-built servo-controlled biaxial
loading machine and the vertical and horizontal strain
at the center points of the specimens (point o, Fig. 8)
were measured with biaxial strain rosettes (WA-06-
120WT-350, manufactured by M&M Measurement
Group, INC.). A Vishay P-3500 digital strain indicator
and a Vishay switch and balance unit were used in the
strain measurement. The plates are homogeneous, so
T¢ is taken as the height of the cuts, and E; = E,,
ve =v,. The experimental strain versus the average
strain across the plate for different S/7y ratios are
plotted as discrete points in Fig. 9.

We constructed numerical models with the same
dimensions, elastic constants, and boundary conditions
as the experimental specimens. Because the PMMA
plates are thin (0.005 m), we postulate plane stress
conditions for the numerical models. The numerical
results are plotted as lines in Fig. 9. For all the speci-
men configurations, the strain at point o (refer to Fig.
8) is linearly related to the average strain.
Furthermore, the experimental strain magnitudes are
similar to, but are systematically less than the FEM
strain magnitudes, with differences ranging from 10 to
25 microstrains.

Several explanations may account for the small sys-
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Fig. 9. Comparison of the normal strain in x-direction at point o
(refer to Fig. 8) from the experiments and those from the FEM mod-
eling. Results from both the experiments and the FEM modeling
show that the strain at point o increases linearly with increasing
average strain, &, (ave). The discrepancies between the experimental
and FEM results range from 10 to 25 microstrains.

tematic discrepancy between the numerical and labora-
tory experiments shown in Fig. 9. First, the maximum
error in strain measurement with the experimental
setup is about 5 microstrains. Second, the FEM strain
was obtained at point o (see Fig. 8), whereas the ex-
perimental strain was the average strain across the
length of the strain gage. Averaging the FEM strain
across the same length as the strain gage accounts for
about 2-3 microstrain of the discrepancy. Third, in
doing the experiments, specimens were loaded by pin-
ning them with a steel loading frame through holes
close to their left and right boundaries (Fig. 8),
whereas the numerical models were loaded with displa-
cement boundary conditions right at the corresponding
boundaries, and the numerical models do not contain
any pinholes. Thus, the experimental specimens deform
more (perhaps also inelastically) close to the pinholes
and less far away from them. This causes the average
strain across the central area of the experimental speci-
mens to be systematically less than that of the FEM
models. We consider this to be the major source for
the discrepancy between the experimental and FEM
strains. However, the exact contribution of this source
to the discrepancy is difficult to evaluate.

One may consider that the elastic constants assigned
to the numerical models may not be the same as those
of the experimental specimen, and this may contribute
to the discrepancy shown in Fig. 10. To examine
whether this is true, we have varied the elastic con-
stants in the FEM models. The results show that the
strain solutions are independent of the elastic con-
stants, so the differences between the elastic constants
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Fig. 10. Results of the normal stress in x-direction at point o from
the experiments and the same stress from the FEM modeling (refer
to Fig. 8). Results from both the experiments and the FEM model-
ing show that the stress at point o increases linearly with increasing
average strain, &,,(ave). Also the stress is tensile when S/T;>1.0;
whereas it is compressive when S/Ty < 1.0.

of the FEM models and those of the experimental spe-
cimens do not cause any discrepancy in the strains.

The measured strain data can be converted to stress
using the equation,

(12)

Oxx = W(Sxx + VS},-}-),
derived from the two-dimensional statement of
Hooke’s Law for plane stress conditions (Jaeger and
Cook, 1979). Eq. (12) implies that the stress state at
point o is determined by the strain term (eyy + Ve,)).
Although ¢, is extensional (positive, Fig. 9), the stress
0. can be either tensile (positive) or compressive
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(negative), depending on the sign of (e + vey,). For
small ratios of spacing to fracture height, the strain in
the y-direction is negative enough to induce a compres-
sive stress.

The experimental stress versus the average strain for
different S/7; ratios are plotted in Fig. 10(a), and the
experimental stress versus the S/7; ratio for the case
with ¢y .(ave) = 0.0022 is plotted in Fig. 10(b). Fig.
10(a) and (b) shows that when the experimental S/T}
ratio is 0.4 and 0.6, the stress (o,,) at point o is com-
pressive. When the S/T¢ ratio is 1.0 and 1.4, the stress
at point o is tensile. These results agree with those for
the stress transition found using the numerical model-
ing.

5. Discussion

In the previous sections, we show that there is a
stress state transition between two adjacent opening-
mode fractures in both a homogencous material and a
layered material under extension. In this section, we
discuss the implications of the results to the process of
jointing in layered rocks. Then, we summarize the field
measurements of joint spacing from the literature and
explain these data using our numerical results.

5.1. Mechanism of fracture saturation

Opening-mode fractures form in response to tensile
stress in the direction perpendicular to the fracture
plane and/or internal fluid pressure (Pollard and
Aydin, 1988). The stress state transition described in
this paper implies that an opening-mode fracture can-
not form between two fractures with a spacing to layer
thickness ratio less than the critical value unless a
locally perturbed tensile stress field exists somewhere
between the fractures (e.g. at flaw tips), or a mechan-
ism (e.g. internal fluid pressure) exists to overcome the
compressive stress. With these caveats, the critical spa-
cing to layer thickness ratio gives the lower limit for the
spacing to layer thickness ratio, i.e. the ratio at fracture
saturation. The stress state transition provides an expli-
cit mechanism for fracture saturation in layered rocks.

5.2. Joint spacing data from the literature

Field observations provide a broad range of fracture
spacing to layer thickness ratios from less than 0.1 to
greater than 10, with the most commonly reported
values between 0.3 and 1.2 (see Table 1). Exceptions
do exist. Narr and Suppe (1991) report that the frac-
ture spacing to layer thickness ratio varies from 2 to
10  with structural position in the Monterey
Formation. McQuillan (1973) and Ladeira and Price
(1981) report spacing to layer thickness ratios of close

to zero in Asmari limestone, Portuguese greywacke
and UK greywacke layers with thickness greater than
1.5 m and up to 12 m. Becker and Gross (1996) report
a joint spacing to layer thickness ratio of about 0.11
near a fault zone in a limestone layer of the Turonian
Gerofit Formation, Southern Israel.

For convenience in the following discussion, we clas-
sify fracture spacing to layer thickness ratios into four
ranges with

Rangel: S/T > 1.2;

RangeII: 0.8<S/Ty < 1.2;

Range III:  0.3<S5/Ty < 0.8;

Range IV: S/T; < 0.3.

5.3. Explanations for different joint spacings in layered
rocks

The spacings in Range 1 (S/7; > 1.2) can be
explained as the jointing process in the beds having
not reached the saturation level. The numerical exper-
iments by Rives et al. (1992) show that each layer in a
series of layers can have different levels of develop-
ment. For a joint set in Range I, the measured mean
joint spacing value is unlikely to be the minimum poss-
ible value for that layer. Because spacing in this range
changes significantly for minor variations in applied
strain (Wu and Pollard, 1995), measured values of spa-
cing to layer thickness in Range I may be useful for
characterizing the strain.

The spacings in Range II (0.8<S/T¢ < 1.2) corre-
spond to our critical spacing to layer thickness ratio
(defined in Eq. 11), i.e. spacing at or near the satur-
ation level. For a given fracture set, the critical spacing
to layer thickness ratio is determined by the layer
thickness, the Young’s modulus ratio, the Poisson’s
ratios of the fractured layer and the neighboring
layers, and the overburden stress during the formation
of the fractures, but it is independent of the applied
average strain (Fig. 3). Therefore, data on spacing to
layer thickness ratios in Range II may not be used for
strain characterization.

For the spacings in Ranges III and IV, the most
prevalent explanations (e.g. Narr and Suppe, 1991;
Rives et al., 1992; Gross, 1993; Becker and Gross,
1996) are versions of the concept proposed by Hobbs
(1967). Later joints are said to form in the intervals
between two earlier-formed adjacent joints as a result
of the stress transferred from adjacent layers as the
average strain increases. When the average strain
reaches a certain value, either the tensile stress at the
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middle point achieves the level of the tensile strength
of the rock, or the stress intensity factor of any flaw
between the two earlier-formed joints achieves the frac-
ture toughness of the rock and a new fracture forms.
Consequently, closely spaced joints are interpreted to
have formed in localities where there is a high average
strain magnitude.

However, our FEM and laboratory results imply
that with only an extension of the layers, it is imposs-
ible to have new fractures form between two earlier
fractures if the spacing to layer thickness ratio of the
earlier fractures is equal to or less than the critical
ratio, because the normal stress component in the
direction perpendicular to the fractures is compressive
(Fig. 2). This stress component as derived by Hobbs is
tensile for all spacing to layer thickness ratios, but the
Hobbs stress distribution does not satisfy the equili-
brium equations of elasticity (see Appendix).
Therefore, some new mechanisms must be considered
to overcome the compressive stress and thereby explain
the formation of closely spaced fractures.

A possible mechanism is that the compressive stress
between two fractures is overcome by the local tensile
stress produced where flaws exist in the fractured
layer. The compressive overburden stress in the direc-
tion parallel to the joints could produce tensile stress
in the direction perpendicular to the joints if the flaws
have a finite radius of curvature at their upper or
lower extremity (Pollard and Aydin, 1988, fig. 20). The
magnitude of this tensile stress would increase with
depth, and it would increase with internal fluid press-
ure in the flaw.

We conclude that fractures with spacing in Range
IIT and IV could form at depth in the crust under the
action of overburden load and/or fluid pressure, if
such flaws exist. Under these conditions the expla-
nation of fracture saturation due to the stress tran-
sition breaks down. Field evidence for infilling joints
initiating at flaws with finite radii of curvature would
be diagnostic of this mechanism.

Flaws may be cracks of various lengths and these
may be located at the layer interfaces or in the middle
of the fractured layer, as observed by Helgeson and
Aydin (1991). In a companion paper, we study the
process of sequential infilling by crack-like flaws
between existing fractures with spacing to layer thick-
ness ratio less than the critical value. The results show
that existing flaws of certain sizes can significantly
change the local stress field, i.e. a crack can propagate
into and through the compressive stress region, under
certain conditions. Also, infilling fractures are more
likely to initiate near the interfaces than in the middle
of the fractured layer.

We have only treated the problem in two dimen-
sions, so one may argue that the results may not be
applicable for fractures propagating in the direction

perpendicular to the cross-section (horizontal propa-
gation). In other words, a fracture may propagate
horizontally and infill between two existing fractures
with spacing to layer thickness ratio less than the criti-
cal value, and hence form more closely spaced frac-
tures. However, the compressive stress exists in a
cylindrical volume, if viewed in three dimensions, and
this volume is as extensive as the fractures. This com-
pression should inhibit horizontal propagation of a
fracture between two existing fractures with spacing to
layer thickness ratio less than the critical value.

6. Conclusions

From the study of the stress state transition between
two adjacent opening-mode fractures, we have defined
a critical fracture spacing to layer thickness ratio.
When the fracture spacing to layer thickness ratio
changes from greater than to smaller than the critical
value, the normal stress in the direction perpendicular
to the fractures changes from tensile to compressive.
The critical spacing to layer thickness ratio increases
non-linearly with increasing ratio of the Young’s mod-
ulus of the fractured layer to that of the neighboring
layers, with increasing Poisson’s ratio of the fractured
layer, and with increasing magnitude of overburden
stress (depth). But, the critical ratio decreases nonli-
nearly with increasing Poisson’s ratio of the neighbor-
ing layers. The critical spacing to layer thickness ratio
provides an explanation for fracture saturation.

We have classified the joint spacing data from
the literature into four ranges with Range I:
S/T¢ > 1.2; Range II: 0.8<S/Ty < 1.2; Range III:
0.3<S/Tr < 1.2; and Range IV: S/Tt < 0.3. Joints in
Range I represent the unsaturated cases. Range II cor-
responds to the critical spacing to layer thickness ratio
as determined from our numerical modeling. Joints in
Range III and Range IV imply that another mechan-
ism for infilling must operate. Possible mechanisms
include joint initiation from flaws with finite curvature
and growth of crack-like flaws driven by internal fluid
pressure or overburden stress.
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Appendix. The Hobbs model

The Hobbs (1967) model was based on the fibre-
loading theory initially outlined by Cox (1952). The
fibre-loading theory considers a cylindrical fibre of one
material embedded in an isotropic matrix of another,
whereas the Hobbs model considers a layered system
(Fig. Al). Hobbs postulated the following.

1. There is no slippage at the interfaces and all the
layers are welded together.

2. All the layers have the same strain (e,) before frac-
turing.

3. The elastic moduli of the two neighboring layers are
E, and G,. They may differ from those of the frac-
tured layer, Er and Gy.

4. The neighboring layers have the same thickness,
which is greater than that of the fractured layer, i.e.
Tn > Tf.

5. The stress oy, = Eféy, in the fractured layer is inde-
pendent of the vertical locations, i.e. g, is only a
function of x.

6. After the fracture formation, the stress o, across
the fracture faces is zero, and at a distance x from
the fracture o, satisfies the condition doy,/dx =
20(ud — u8)/Tt, where 1 is the displacement in the
fractured layer after fracturing, u5 is the displace-
ment in the neighboring layer before fracturing, and
A is a constant related to the shear modulus of the
neighboring layers.

7. The shear stress o,, in the neighboring layers
decreases linearly in the vertical direction, such that
Oy = af,x(Tf — )/ Tt, where ogx is the shear stress at
the interface and a function of x only, y is the dis-
tance from the interface, and T} is the distance in
the vertical direction from the interface to where the

u,=const u,=const
neighboring T y E.G
D layer n T M| ———
A
- > —_—>
A 0 Al X
fractured | . E;, G
layer f
D —_
spacing (8)
«———— | neighboring | Ty Ep G| ——>
layer

Fig. Al. Sketch diagram showing the layered model used by Hobbs
(1967) in studying joint spacing in layered rocks. In his model, the
neighboring layers have the same elastic constants, and the same
thickness. The fractured central layer may have different elastic con-
stants from the neighboring layers. Also it has a thickness smaller
than that of the neighboring layers.

perturbation of the stress system caused by the for-
mation of the joint extends, which is also the thick-
ness of the fractured layer.

8. The normal stress in the fractured layer (o) is
balanced by the shear stress at the interface (aﬂx) in
such a way that do,,/dx = 209 /Tt “

Using the above assumptions and the applied strain
boundary condition shown in Fig. A1, Hobbs (1967)
derived that the stress distribution between two adja-
cent fractures in a series of confined equally spaced
fractures (Fig. Al) as being

(A1)

h(D
Oxx = Efox(aVe){l - oo ( X) }a

cosh(DS/2)

where D = (2/T¢)s/G,/E;, and ¢, (ave) is the average
strain normal to the fractures. The solution by Hobbs
(1967) provides a stress distribution between adjacent
fractures that is not consistent with the solution for
the full elastic boundary value problem as determined
using the finite element code FRANC. To show their
inconsistency, we plot the stress distributions predicted
by Eq. (Al) in Fig. A2 using the same set of elastic
constants as in Fig. 2, ie. Ef=E, =40 GPa,
vi =v, = 0.2, and the same spacing to layer thickness
ratios. By comparing Figs. 2 and A2, we see that the
stress magnitudes predicted by the Hobbs model are
greater in general, and always tensile. Thus, the Hobbs
solution fails to predict the stress state transition as
the fracture spacing to layer thickness ratio changes to
values less than one.

The correct solution for an elastic boundary value
problem requires the use of the equilibrium and com-
patibility equations as well as the Hooke’s law
(Timoshenko and Goodier, 1970). These are the com-
plete set of governing equations. Failure to adhere to
these equations produces an erroneous stress distri-
bution. The equilibrium equations for two-dimensional
elasticity problems in the absence of body forces are

00y A0y

= _0 A2
dx + dy ’ (A2)
000 | Jow _, (A3)

0x ay

where oy, =0, by conservation of angular momen-
tum (Timoshenko and Goodier, 1970).

Suppose the Hobbs solution satisfies Eq. (A2), let us
see whether it satisfies Eq. (A3) in the fractured layer.
Hobbs does not give an expression for the shear stress
oy nor the normal stress o,, in the fractured layer.
From assumption 8, Eq. (A2) and the condition
oy(y =0) = ¢, we have
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Fig. A2. Distribution of fracture normal stress between two adjacent
fractures from the Hobbs model. The figure shows that the fracture
normal stress (o,) between two adjacent fractures predicted by the
Hobbs model is tensile for all the spacing to layer thickness ratios.

2y
O-xy = (7},.x = (1 =+ Tf)o’gx, (A4)
where ¢¢, can be derived using assumption 8 and Eq.
(Al) as
4 12 sinh(Dx)
~ = —(E¢G - —_—. AS
G}A ( f n) gkl(a\ua)c()sh(l):;/z) ( )

Eq. (A5) shows that a‘ix is a non-linear function of x.
Therefore, the shear stress o, in (A4) is a non-linear
function of x and a linear function of y. Note that

Tp(x = £8/2,y=0) =0 (x = +5/2)

= T(E;Gy)"*e r(ave)tanh(DS/2). (A6)
Thus Eq. (A4) does not satisfy the boundary condition
at the fracture (x = +5/2), where ¢, = 7,, = 0.

If we suppose the Hobbs’ solution satisfies Hooke’s
law, we have

1
Exx = E(Uxx - Vfo—w)a (A7)
f

for plane stress, and

1 —v? ve(l + vy
Exx = Ef f xXx t(Tft)o-}’yﬂ (AS)
for plane strain. However, Hobbs uses

Oxx
= X A9
b = (A9)

From Egs. (A7) and (A9), we have ¢,, = 0. From Egs.
(A8) and (A9), we have o,, = —[vt/(1 4+ v¢)lo.y, Which
is independent of yp. Thus, in both cases, we get
da,,/0y = 0, whereas Eq. (A4) implies that dg,,/dx is
a non-linear function of x. Therefore, the Hobbs sol-
ution does not satisfy Eq. (A3) in the fractured layer.

In the neighboring layers, oy, = Eéyy(ave) = constant,
whereas ¢, is a linear function of y (assumption 7), i.e.
90y, /0x =0 but do,,/0y = constant. Thus, Eq. (A2) is
not satisfied in the neighboring layers.

From the above analysis, we conclude that the sol-
ution by Hobbs (1967) does not satisfy the complete
set of governing equations of elasticity, and suggest
that this solution should be abandoned. However, the
conceptual model Hobbs proposed for stress transfer
from neighboring layers and sequential infilling has
merit. Indeed, the FEM solution we utilize includes
such stress transfer and admits the development of ad-
ditional fractures by sequential infilling. This process is
limited by the transition from tension to compression
when S/T;~ 1.0, and this transition is not found in the
Hobbs solution.
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